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Recall from Lecture 6:
Proposition 1. Suppose T'(x) € R=%([z]], E(z,y) € R2[[z, y]] with
e £(0,0) =0,
o F has a term of degree > 1 in vy,
o LE(x,T(x)) # 0 (so since coefficients are nonnegative, in particular L E(p,T(p)) #0)

and T(x) = E(x,T(x)), as formal power series. Let p be the radius of convergence of T(x)
and suppose 0 < p < oo, T'(p) < oo and Je such that E(p + ¢,T(p) + €) < co. Then 3
functions A(z), B(z) analytic at 0 such that

T(x)=Alp—2)+Blp—x)Vp—=

for |x| < p, x near p.

1 Proof of the square root result
Theorem 2 (Weierstrall preparation). Let f :(é X f:—> C and let f be analytic in a neigh-
bourhood of (0,0). Suppose
d dk1 d*
f(0,0) = d—yf(0,0) == %f((),()) =0, but d—ykf(0,0) # 0.
Then in a neighbourhood of (0,0) we can uniquely write f(z,y) = p(x,y)r(z,y) where

e p,r analytic in the neighbourhood

e 7 is nowhere 0 in the neighbourhood

o p(z,y) = po(x) + pr(x)y + - + pery™ L + 9% (a Weierstraf polynomial) with the p;
analytic in a neighbourhood of 0 and p;(0) =0



Sketch of proof. (For details see analysis text.)
Unique by expanding series.
By conditions on f,

o %} f(z,y) is nonzero at (0,0), so there exists a small neighbourhood of (0,0) where it
is nowhere 0,

e f(0,y) has a root at 0 of multiplicity k, so for fixed z( sufficiently near 0, f(z¢,y) has
k roots (maybe distinct)

So there exists a Weierstrafl polynomial with the same root structure, call it p(x,y). Then

f(z,y)
p(z,y)

is analytic and nowhere 0 in a neighbourhood of (0, 0). [

Corollary 3 (k =1 in Weierstra$l preparation, Implicit function theorem).
Let f :& X %—> C and let f be analytic in a neighbourhood of (0,0). Suppose

d

Then there ezists a neighbourhood of 0 in C and a function g(x) analytic on the neighbourhood
with

(1) f(z,g9(x)) =0, for all x in the neighbourhood
(2) if f(x,y) =0 for x,y sufficiently close to 0, then y = g(x).

Proof. On the neighbourhood of (0,0), by Weierstral preparation, we get

f(z,y) = (po(x) + y)r(z,y).

Now r(z,y) is nowhere 0 on the neighbourhood, so f(x,y) = 0 if and only if —py(z) =y, so
g(x) = —po(z) will work. O

Corollary 4 (k = 2 in Weierstraf} preparation). Let f :(é X (?é—> C and let f be analytic in
a neighbourhood of (0,0). Suppose

2

d d
f(0,0) = d—yf(0,0) =0, but d? (0,0) # 0.
Then in a neighbourhood of (0,0),
f(@.y) = (po(x) + pr(2)y + v*)r(z, y)

with p; analytic in neighbourhood and r(x,y) nowhere 0 in the neighbourhood.
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Now we can prove Proposition 1:

Proof of Proposition 1. As Je with E(p + €, T(p) + €) < oo and we have nonnegative coeffi-
cients, we can choose a neighbourhood U of (p,T(p)) such that E is analytic on U.
Let

F(z,y) =y — E(z,y).
Then F is analyticon U and F(z,T(z)) = T(z)—E(z,T(x)) = 0 for |z| < p. By Pringsheim’s
Theorem, p is a singularity so the hypotheses of the implicit function theorem must be false
at (p, T(p)); thus we must have %F(p, T(p)) =0.

d d
—F(z,y)=1— —FE(z,y
(@) =1 1 B(.)

dy
We want to check that the hypotheses of Corollary 4 are satisfied:
d? d?
d_ng(m’y) = —d—yQE(%y) <0

for z,y > 0 (since we have nonnegative coefficients and at least one y? term), so in particular,

e T(p) <0
thus
F(z,y) = (po(x) + pr(@)y + y*) r(z,y)

J

-

P(z,y)

with p; analytic not 0 at p and r(z,y) analytic, nowhere 0 in a neighbourhood of (p, T'(p)).
Let D(x) be the discriminant of P(x,y)

D(z) = pl(x)Q — 4po(z)

Next we want to check D(p) =0, 2L D(p) # 0. To see these, just calculate:
F(z,T(x)) =0, but r(z,T(x)) # 0 for x near p, so

po(p) + p1(p)T(p) + T(p)* = 0. (1)
Also
0 — %F@,T@»
p 0
= (G P0.T0)) (0 T+ TG )
#0
=0 = %P(p,T(p))

= pi(p) +27T(p)



and subbing into (1) gives

0=plp) ==~ + =~ =polp) ==~ =~
so D(p) = 0. Now
L) = i) o)~ 4-eo(p)
— 4 (T( )d—pl(ﬂ)er—pO(p))
%F(p,T(p)) = —d%E(p,T(p)KO
and

FECTE) = (w4 T L)) o T() 0, since Pl T(7) =0,

So

! oy - LT,

%D(P) (o, T(p)

Thus D(p) =0, L D(p) # 0.

Returning to the previous calculation we know
po(z) + p1(2)T(x) + T(x)* =0

for x near p, so

T(x)=—

Since D(p) = 0 we can expand /D(x) around p to get

) = dulp - a)*

k>1

and since == D(p) # 0 we know d; # 0. So

T(x):——pl ( \/1+Z kﬂ — ) p—x

pw)

B(p x)

for x near p. O



2 Cauchy’s Theorems

Definition. Let © be a connected open subset of C. A path is a function + : [0, 1] — €.

v(t)
) v(1)

7(0) 7(0)

a path homotopic paths

Definition. Two paths 71,7, : [0,1] — Q with v, (0) = 12(0), 71(1) = 72(1) are homotopic
(above right) if 3 h(z,y) continuous with image in  such that

h(z,0) T (z)
hz,1) = 7(z)
h(0,y) = 7(0)
h(Ly) = m().

Definition. A closed path has v(0) = ~(1).
Definition. A simple path is 1-1 as a function.

Note. Being homotopic depends on ().

Definition. Integrals along paths are defined as you'd expect:

[ = [ P D

Complex analysis is very rigid. Another important example of this is

Theorem 5. If f is analytic on Q and 1,y are homotopic in ) then

Ll f(z)dz = [m f(2)dz.



Theorem 6 (Cauchy’s residue theorem). Let h(z) be meromorphic (i.e., holomorphic except
possibly for finitely many poles) in 2 and let X be a positively oriented simple closed path in

Q. Let S be the set of poles ofh inside the region enclosed by X. Then
9 2)dz = Z Ressh
seS
where Resgh is the [(z — s)™'] in a Laurent expansion of h around s.

Proof. (For just 1 pole at 0). So

= f: h,z"

n=—1
then d
/ dz—/th”dz+h -
n;é 1
and for n # —1,
1
I, / 2"dz = h, / e o ™ dt,  letting A(t) = 2™
A
0 -
= 27m'hn/ e2mitn+1) gy
0
= O’
but
dz

1
A / 6—27rit 27T 627ritdt
0
= 2mi-1.
So [, h(z)dz = 2mih_y.

]

Theorem 7 (Cauchy’s coefficient formula). Let f(z) be analytic in a region 2 containing 0.

Let X be a positively oriented simple closed path in Q. Then

1) = 5 [ 1)

Proof. Write
2= 1
=0

then

z"+1_ E ferns17"

l=—n—1

and so the residue is f,, so the result is an application of Cauchy’s residue theorem.



3 Transfer Theorems

Now we can use this to get a nice transfer theorem.

Definition. A delta neighbourhood of p is a region as illustrated

p+n

L

Note. Stirling’s formula (with the constant) says for o € R\Z

(67

[0 = 2)° ~ [

Theorem 8 (Transfer theorem of Flajolet and Odlyzko). Let 0 < p < 0o and suppose f is
analytic on A — p with A a delta neighbourhood of p and f(x) ~ K(p — x)* as x — p in A
with o € R\Z, then

Sketch of proof. Use the following contour:




Write

v ={x:|z—p| =1, |arg(z —p)| > 0} inner circle
y= Yo = {IL’ : % S ’fl] — ,0|, |I’| S /)+ m, arg(x — p) = 8} straight piece
vs=A{x:|x|=p+n,|arg(x —p)| > 6} outer circle

ya=A{z: 2 <|v—p|, 2] <p+n, arg(x — p) = =0} straight piece

Wlog scale so p = 1. Now bound each piece:
e ~; bound by (length of path)(max of integrand)
® 75,74 are tricky ones, like ['-function integral
e 75 easy, as f bounded so only care about [ z"%
]

Note. If there are > 1 singularities on the circle of convergence, but only finitely many, we
can give the same argument using the following contour (simply add more keyholes) to get
the same result:
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